纯变压器模型在自然语言处理和计算机视觉方面取得了令人印象深刻的成功。但是,变压器的一个限制是它们需要大型培训数据。在3D点云的领域中,大数据集的可用性是一个挑战,它加剧了3D任务的训练变压器问题。在这项工作中,我们凭经验研究和研究利用大量图像的知识以了解点云的理解的效果。我们制定了一条称为\ textIt {pix4point}的管道,该管道允许在图像域中利用预验证的变压器来改善下游点云任务。这是通过用于3D域专门的令牌和解码器层的帮助,通过模态无形的纯变压器主链实现。使用图像预言的变压器,我们分别在Scanobjectnn,ShapenetPart和S3DIS基准上观察到3D点云分类,部分分割和语义分割的任务的Pix4Point的显着性能提高。我们的代码和模型可在:\ url {https://github.com/guochengqian/pix4point}中获得。
translated by 谷歌翻译
PointNet ++是Point Cloud理解的最具影响力的神经体系结构之一。尽管PointNet ++的准确性在很大程度上已经超过了诸如PointMLP和Point Transformer之类的最近网络,但我们发现,大部分性能增益是由于改进的培训策略,即数据增强和优化技术,而不是架构大小,而不是架构的大小,而不是架构。创新。因此,PointNet ++的全部潜力尚未探索。在这项工作中,我们通过对模型培训和缩放策略进行系统的研究来重新审视经典的PointNet ++,并提供两个主要贡献。首先,我们提出了一组改进的培训策略,可显着提高PointNet ++的性能。例如,我们表明,如果没有任何架构的任何变化,则可以将ScanObjectnn对象分类的PointNet ++的总体准确性(OA)从77.9 \%\%提高到86.1 \%,即使超过了最先进的端点”。其次,我们将倒置的残留瓶颈设计和可分离的MLP引入到PointNet ++中,以实现高效且有效的模型缩放,并提出了PointNext,即PointNets的下一个版本。可以在3D分类和分割任务上灵活地扩展PointNext,并优于最先进的方法。对于分类,PointNext的总体准确度为ScanObjectnn $ 87.7 \%$,超过了PointMLP $ 2.3 \%$,而推断的$ 10 \ times $ $。对于语义细分,PointNext建立了新的最先进的性能,$ 74.9 \%$ MEAN IOU在S3DIS上(6倍交叉验证),优于最近的Point Transformer。代码和型号可在https://github.com/guochengqian/pointNext上获得。
translated by 谷歌翻译
Due to their ability to offer more comprehensive information than data from a single view, multi-view (multi-source, multi-modal, multi-perspective, etc.) data are being used more frequently in remote sensing tasks. However, as the number of views grows, the issue of data quality becomes more apparent, limiting the potential benefits of multi-view data. Although recent deep neural network (DNN) based models can learn the weight of data adaptively, a lack of research on explicitly quantifying the data quality of each view when fusing them renders these models inexplicable, performing unsatisfactorily and inflexible in downstream remote sensing tasks. To fill this gap, in this paper, evidential deep learning is introduced to the task of aerial-ground dual-view remote sensing scene classification to model the credibility of each view. Specifically, the theory of evidence is used to calculate an uncertainty value which describes the decision-making risk of each view. Based on this uncertainty, a novel decision-level fusion strategy is proposed to ensure that the view with lower risk obtains more weight, making the classification more credible. On two well-known, publicly available datasets of aerial-ground dual-view remote sensing images, the proposed approach achieves state-of-the-art results, demonstrating its effectiveness. The code and datasets of this article are available at the following address: https://github.com/gaopiaoliang/Evidential.
translated by 谷歌翻译
Video-language pre-training has advanced the performance of various downstream video-language tasks. However, most previous methods directly inherit or adapt typical image-language pre-training paradigms to video-language pre-training, thus not fully exploiting the unique characteristic of video, i.e., temporal. In this paper, we propose a Hierarchical Temporal-Aware video-language pre-training framework, HiTeA, with two novel pre-training tasks for modeling cross-modal alignment between moments and texts as well as the temporal relations of video-text pairs. Specifically, we propose a cross-modal moment exploration task to explore moments in videos, which results in detailed video moment representation. Besides, the inherent temporal relations are captured by aligning video-text pairs as a whole in different time resolutions with multi-modal temporal relation exploration task. Furthermore, we introduce the shuffling test to evaluate the temporal reliance of datasets and video-language pre-training models. We achieve state-of-the-art results on 15 well-established video-language understanding and generation tasks, especially on temporal-oriented datasets (e.g., SSv2-Template and SSv2-Label) with 8.6% and 11.1% improvement respectively. HiTeA also demonstrates strong generalization ability when directly transferred to downstream tasks in a zero-shot manner. Models and demo will be available on ModelScope.
translated by 谷歌翻译
Face manipulation detection has been receiving a lot of attention for the reliability and security of the face images. Recent studies focus on using auxiliary information or prior knowledge to capture robust manipulation traces, which are shown to be promising. As one of the important face features, the face depth map, which has shown to be effective in other areas such as the face recognition or face detection, is unfortunately paid little attention to in literature for detecting the manipulated face images. In this paper, we explore the possibility of incorporating the face depth map as auxiliary information to tackle the problem of face manipulation detection in real world applications. To this end, we first propose a Face Depth Map Transformer (FDMT) to estimate the face depth map patch by patch from a RGB face image, which is able to capture the local depth anomaly created due to manipulation. The estimated face depth map is then considered as auxiliary information to be integrated with the backbone features using a Multi-head Depth Attention (MDA) mechanism that is newly designed. Various experiments demonstrate the advantage of our proposed method for face manipulation detection.
translated by 谷歌翻译
Implicit regularization is an important way to interpret neural networks. Recent theory starts to explain implicit regularization with the model of deep matrix factorization (DMF) and analyze the trajectory of discrete gradient dynamics in the optimization process. These discrete gradient dynamics are relatively small but not infinitesimal, thus fitting well with the practical implementation of neural networks. Currently, discrete gradient dynamics analysis has been successfully applied to shallow networks but encounters the difficulty of complex computation for deep networks. In this work, we introduce another discrete gradient dynamics approach to explain implicit regularization, i.e. landscape analysis. It mainly focuses on gradient regions, such as saddle points and local minima. We theoretically establish the connection between saddle point escaping (SPE) stages and the matrix rank in DMF. We prove that, for a rank-R matrix reconstruction, DMF will converge to a second-order critical point after R stages of SPE. This conclusion is further experimentally verified on a low-rank matrix reconstruction problem. This work provides a new theory to analyze implicit regularization in deep learning.
translated by 谷歌翻译
Future work sentences (FWS) are the particular sentences in academic papers that contain the author's description of their proposed follow-up research direction. This paper presents methods to automatically extract FWS from academic papers and classify them according to the different future directions embodied in the paper's content. FWS recognition methods will enable subsequent researchers to locate future work sentences more accurately and quickly and reduce the time and cost of acquiring the corpus. The current work on automatic identification of future work sentences is relatively small, and the existing research cannot accurately identify FWS from academic papers, and thus cannot conduct data mining on a large scale. Furthermore, there are many aspects to the content of future work, and the subdivision of the content is conducive to the analysis of specific development directions. In this paper, Nature Language Processing (NLP) is used as a case study, and FWS are extracted from academic papers and classified into different types. We manually build an annotated corpus with six different types of FWS. Then, automatic recognition and classification of FWS are implemented using machine learning models, and the performance of these models is compared based on the evaluation metrics. The results show that the Bernoulli Bayesian model has the best performance in the automatic recognition task, with the Macro F1 reaching 90.73%, and the SCIBERT model has the best performance in the automatic classification task, with the weighted average F1 reaching 72.63%. Finally, we extract keywords from FWS and gain a deep understanding of the key content described in FWS, and we also demonstrate that content determination in FWS will be reflected in the subsequent research work by measuring the similarity between future work sentences and the abstracts.
translated by 谷歌翻译
We propose, Monte Carlo Nonlocal physics-informed neural networks (MC-Nonlocal-PINNs), which is a generalization of MC-fPINNs in \cite{guo2022monte}, for solving general nonlocal models such as integral equations and nonlocal PDEs. Similar as in MC-fPINNs, our MC-Nonlocal-PINNs handle the nonlocal operators in a Monte Carlo way, resulting in a very stable approach for high dimensional problems. We present a variety of test problems, including high dimensional Volterra type integral equations, hypersingular integral equations and nonlocal PDEs, to demonstrate the effectiveness of our approach.
translated by 谷歌翻译
Marine waves significantly disturb the unmanned surface vehicle (USV) motion. An unmanned aerial vehicle (UAV) can hardly land on a USV that undergoes irregular motion. An oversized landing platform is usually necessary to guarantee the landing safety, which limits the number of UAVs that can be carried. We propose a landing system assisted by tether and robot manipulation. The system can land multiple UAVs without increasing the USV's size. An MPC controller stabilizes the end-effector and tracks the UAVs, and an adaptive estimator addresses the disturbance caused by the base motion. The working strategy of the system is designed to plan the motion of each device. We have validated the manipulator controller through simulations and well-controlled indoor experiments. During the field tests, the proposed system caught and placed the UAVs when the disturbed USV roll range was approximately 12 degrees.
translated by 谷歌翻译
The architecture of transformers, which recently witness booming applications in vision tasks, has pivoted against the widespread convolutional paradigm. Relying on the tokenization process that splits inputs into multiple tokens, transformers are capable of extracting their pairwise relationships using self-attention. While being the stemming building block of transformers, what makes for a good tokenizer has not been well understood in computer vision. In this work, we investigate this uncharted problem from an information trade-off perspective. In addition to unifying and understanding existing structural modifications, our derivation leads to better design strategies for vision tokenizers. The proposed Modulation across Tokens (MoTo) incorporates inter-token modeling capability through normalization. Furthermore, a regularization objective TokenProp is embraced in the standard training regime. Through extensive experiments on various transformer architectures, we observe both improved performance and intriguing properties of these two plug-and-play designs with negligible computational overhead. These observations further indicate the importance of the commonly-omitted designs of tokenizers in vision transformer.
translated by 谷歌翻译